3W,5W,10W uv laser
  • 밝은 색상과 어두운 색상의 플라스틱에 대한 UV 레이저 마킹 Apr 02 , 2021
    플라스틱 레이저 마킹은 우수한 마킹 품질 및 낮은 소유 비용과 같은 경쟁 기술에 비해 몇 가지 이점을 제공합니다. 이점은 다음과 같습니다. 영구. 플라스틱 레이저 마킹을 사용하면 재료 자체가 마킹이 되어 잉크 마킹이나 라벨에 비해 마킹의 내구성이 향상됩니다. 품질. 레이저는 이미징 해상도가 높고 몇 미크론의 선폭을 생성할 수 있습니다. 소모품이 없습니다. 레이저는 다른 마킹 기술과 관련된 소모품을 피합니다. 또한 잉크 경화와 같은 2차 프로세스를 제거합니다. 레이저 마킹 방법 "플라스틱"은 광범위한 재료를 포함하기 때문에 이를 생성하는 레이저와 함께 다양한 유형의 마킹이 가능합니다. 당사의 마킹 프로세스에는 다음이 포함됩니다. 포밍. 어두운 플라스틱을 표시하는 가장 일반적인 방법인 이 프로세스는 표면의 재료...
    더보기
  • 355nm UV 레이저는 드릴링, 주요 PCB 회로 기판 조각에 사용됩니다. Apr 08 , 2021
    355nm UV 레이저는 드릴링, 주요 PCB 회로 기판 조각에 사용됩니다. 자동차 리모컨 키의 작동 원리는 먼저 키를 통해 미약한 전파를 내보내고 전파 신호를 자동차 안테나가 수신하고 전자 제어 장치에서 신호 코드를 인식한 다음 액추에이터(모터 또는 전자기 코일) 시스템의 개폐 동작을 수행합니다. 이러한 지능형 명령을 완료하려면 지능형 시스템의 어머니인 PCB 회로 기판에 의존해야 합니다. PCB 회로 기판은 고밀도, 고집적화, 패키징, 소형화의 특성을 가지고 있으며 가전제품, 스마트폰, PC와 같은 스마트 전자 제품에 널리 사용됩니다.   PCB 회로 기판은 생산 공정에서 자외선 레이저 드릴링, 절단, 조각 및 기타 에칭 기술을 사용해야 합니다. 자외선 레이저는 파장이 355nm로 차가운 광원입...
    더보기
  • 355nm 레이저 드릴링, 절단 및 조각 PCB 회로 기판은 버를 생성하지 않습니다 Apr 08 , 2021
    355nm 레이저 드릴링, 절단 및 조각 PCB 회로 기판은 버를 생성하지 않습니다   자동차 리모컨 키의 작동 원리는 먼저 키를 통해 미약한 전파를 내보내고 전파 신호를 자동차 안테나가 수신하고 전자 제어 장치에서 신호 코드를 인식한 다음 액추에이터(모터 또는 전자기 코일) 시스템의 개폐 동작을 수
    더보기
  • 금속의 레이저 마킹, 드릴링, 용접 및 절단 Apr 08 , 2021
    금속의 레이저 마킹, 드릴링, 용접 및 절단
    더보기
  • 레이저 드릴링 금속은 뛰어난 속도와 낮은 운영 비용을 제공합니다. Apr 09 , 2021
    금속 드릴링은 자동차, 항공 우주, 의료 기기 제조, 전자 및 반도체 제조를 포함한 많은 산업에서 중요한 응용 분야입니다. 금속 부품에 미치는 추가 영향을 최소화하면서 정밀한 구멍을 뚫어야 하는 필요성은 고품질 제품을 생산하는 데 매우 중요합니다. 레이저 드릴링은 비접촉 특성과 금속 부품의 열영향부(HAZ) 최소화로 인해 금속 가공에 널리 사용되는 솔루션이 되었습니다. 레이저 드릴링은 또한 니켈 합금, 철, 알루미늄 합금, 구리 합금, 티타늄 합금, 스테인리스강, 니티놀 및 황동을 포함하여 동일한 시스템에서 다양한 유형의 금속을 처리할 수 있을 만큼 충분히 유연합니다.   금속 레이저 드릴링의 장점 낮은 HAZ: 레이저 에너지는 작고 높은 에너지 밀도 지점에 집중되어 열을 정밀하게 제어하고 구멍 외...
    더보기
  • 세라믹 레이저 드릴링의 장점 Apr 12 , 2021
    레이저 에너지를 사용하여 세라믹을 드릴링하면 열, 구멍 배치 및 구멍 품질을 정밀하게 제어하면서 빠른 드릴링이 가능합니다. 드릴링은 텍스처링 또는 마이크로머시닝 요구 사항을 위한 관통 구멍 또는 부분 구멍을 생성할 수 있습니다. 마이크로 드릴링은 직경이 수십 미크론에 이르는 구멍을 뚫는 기능을 제공하는 단파장 레이저 소스를 사용할 때 가능합니다. Control Micro Systems, Inc.(CMS 레이저)는 다양한 레이저 소스 및 광학 장치를 테스트하여 모든 세라믹 드릴링 응용 분야에 대한 최적의 설정을 결정할 수 있는 세계적 수준의 응용 연구실을 보유하고 있습니다. 또한 당사의 엔지니어는 모든 유형의 생산 환경에 대해 우수한 시스템 설계를 제공할 수 있는 자동화 및 부품 처리 경험을 보유하고 있습니다...
    더보기
  • 자동차 제조용 레이저 부품 마킹, 핸드헬드 에칭 및 용접 Apr 13 , 2021
    자동차 부품 마킹의 중요성 부품 마킹은 생산 라인의 운전자, 기계공, 공급업체 및 직원에게 중요한 정보를 제공합니다. 차량 전체에서 볼 수 있는 이러한 표시에는 바코드, 일련 번호, 규정 준수 세부 정보 및 중요한 경고 라벨이 포함됩니다.   당사의 레이저는 속도와 정밀도로 절제, 산화 및 층 제거와 같은 기술을 사용하여 플라스틱, 금속 합금 및 고무에 마킹할 수 있습니다. 부품에는 스티어링 칼럼 줄기, 게이지, 라디오 및 온도 조절 장치, 창 스위치, 전자 열쇠, 타이어 및 서스펜션 부품이 포함됩니다. 당사의 레이저는 전조등 및 후미등 어셈블리의 구성 요소는 물론 후드 아래의 다양한 부품에도 마킹합니다. 레이저 마킹 시스템을 자동차 생산 체인에 통합하면 부품당 비용이 절감될 뿐만 아니라 전체 처리...
    더보기
  • UV 레이저는 플라스틱의 작고 정밀한 구멍에 이상적입니다. Apr 16 , 2021
    레이저 기술은 기존 드릴링 방법에 비해 많은 장점이 있습니다. 보다 정밀한 드릴링이 가능하고 플라스틱 부품과 기계적인 접촉이 없으며 구멍 크기와 모양을 빠르고 쉽게 전환할 수 있습니다. 채워야 하는 순서에 따라 특정 부품에 대해 다른 구멍 크기가 필요할 수 있습니다. 레이저 드릴링 덕분에 드릴되지 않은 부품을 비축한 다음 주문이 접수되면 필요한 구멍 크기를 드릴할 수 있습니다. 결과적으로 미리 뚫은 구멍이 다른 동일한 부품을 비축할 필요가 없습니다. 맞춤형 소프트웨어를 사용하면 생산 라인을 중단하지 않고도 구멍 크기와 모양을 실시간으로 변경할 수 있습니다. 레이저 드릴링의 다른 장점은 다음과 같습니다. 비접촉 프로세스. 레이저 드릴링을 사용하면 비트 및 기타 부품을 청소, 연마 및 교체할 필요가 없습니다. ...
    더보기
  • 얇은 금속의 레이저 드릴링 Apr 16 , 2021
    금속 드릴링은 자동차, 항공 우주, 의료 기기 제조, 전자 및 반도체 제조를 포함한 많은 산업에서 중요한 응용 분야입니다. 금속 부품에 미치는 추가 영향을 최소화하면서 정밀한 구멍을 뚫어야 하는 필요성은 고품질 제품을 생산하는 데 매우 중요합니다. 레이저 드릴링은 비접촉 특성과 금속 부품의 열영향부(HAZ) 최소화로 인해 금속 가공에 널리 사용되는 솔루션이 되었습니다. 레이저 드릴링은 또한 니켈 합금, 철, 알루미늄 합금, 구리 합금, 티타늄 합금, 스테인리스강, 니티놀 및 황동을 포함하여 동일한 시스템에서 다양한 유형의 금속을 처리할 수 있을 만큼 충분히 유연합니다. 금속 레이저 드릴링의 장점 낮은 HAZ: 레이저 에너지는 작고 높은 에너지 밀도 지점에 집중되어 열을 정밀하게 제어하고 구멍 외부의 금속에 ...
    더보기
  • 반도체 소자 제조용 SiC의 UV 레이저 드릴링 Apr 19 , 2021
    펄스 UV 레이저 가공은 AlGaN/GaN 트랜지스터 구조를 지원하는 실리콘 카바이드(SiC) 웨이퍼에 미세 구멍을 뚫는 데 사용됩니다. 나노초 펄스를 사용하는 직접 레이저 제거는 400µm 두께의 SiC에서 관통 및 블라인드 홀을 생성하는 효율적인 방법을 제공하는 것으로 입증되었습니다. 구멍을 뚫을 때 전면 패드에 개구부가 형성되는 반면 막힌 구멍은 후면에서 ~40μm 전에 멈추고 추가 마스크 없이 후속 플라즈마 에칭에 의해 전기 접촉 패드로 진행되었습니다. 트랜지스터의 소스 패드와 후면의 접지 사이의 낮은 유도 연결(비아)은 구멍의 금속화에 의해 형성되었습니다. 종횡비가 5-6인 마이크로 비아는 400μm SiC에서 처리되었습니다. 웨이퍼 레이아웃에서 레이저 드릴링까지의 프로세스 흐름은 웨이퍼의 기존 패...
    더보기
  • 웨이퍼 층에 형성된 막힌 구멍 테스트 방법 Apr 19 , 2021
    다중 칩 반도체 테스트 웨이퍼의 접촉층에서 막힌 구멍을 감지하는 새로운 방법은 구멍이 막힌 구멍이 아닌 경우 후속 에칭 단계에서 미리 결정된 거리만큼 구멍을 바로 아래 층으로 확장한다는 사실을 이용합니다. 접촉층. 소정의 수의 구멍이 접촉층을 통해 그리고 접촉층 하부의 층으로 소정의 거리
    더보기
  • 연속파(CW) 1070nm 파이버 레이저를 사용하여 단결정 실리콘, 인듐 인화물 및 안티몬화 인듐에 미세 구멍 레이저 드릴링 Apr 19 , 2021
    Si, InP 및 InSb 반도체 웨이퍼에서 비아 홀이라고도 하는 "스루" 홀의 레이저 마이크로 드릴링은 IPG 레이저 모델 YLR-2000 CW 멀티모드 2kW 이터븀 파이버 레이저 및 JK400의 밀리초 펄스 길이를 사용하여 연구되었습니다. 400W) 파이버 레이저, 둘 다 1070nm 파장. 1.1eV의 광자 에너지에 대해 좁은(InSb Eg 0.17eV) 및 넓은(InP Eg 1.35eV)) 실온 밴드갭 Eg의 반도체 기판에 대해 이 레이저 파장 및 간단한 펄싱 체계의 유연성이 입증되었습니다. 광학 현미경 및 단면 분석을 사용하여 구멍 치수와 모든 웨이퍼에 대한 재주조 재료의 분포, 실리콘의 경우 (100) 및 (111) 단결정 표면 Si 웨이퍼 배향에 대한 모든 미세 균열을 정량화했습니다. 열확산율...
    더보기
1 2 3 4 ... 27
최신 제안 받기 뉴스레터 구독

계속 읽고, 게시를 유지하고, 구독하고, 여러분의 생각을 알려주세요.

메시지를 남겨주세요
메시지를 남겨주세요
당사 제품에 관심이 있고 자세한 내용을 알고 싶으시면 여기에 메시지를 남겨주시면 최대한 빨리 답변해 드리겠습니다.

제품

에 대한

연락하다